BABY’S FIRST RIEMANN-ROCH

ROK GREGORIC

This note summarizes a rather elegant and intuitive “proof” of the Riemann-Roch
Theorem, in an elementary fashion and entirely from first principles (of course, in
the complex analytic setting). I have learned it from the lovely notes on curves by
Harris | |, but it is very similar to Riemann’s original consideration | .

0.1. Contents. We lay this, Riemann’s contribution, out in Chapter 1. Then we
discuss Roch’s contribution and generalization to arbitrary divisors in Chapter 2.
In Chapter 3, we briefly discuss how the theorem applies to line bundles in Chapter
3. Pursuing this perspective on the Riemann-Roch story, we find in Chapter 4 how
it leads us naturally to consider sheaf cohomology. Finally in Chapter 5, we sketch
the usual cohomological proof of the Riemann-Roch Theorem, and compare it to
the explicit proof sketched in Chapter 2.

The reader who wishes only to walk away with intuition about Riemann-Roch,
and understanding of what it says, may safely skip Capters 3, 4, and 5.

0.2. What we hope to do. Our primary goal is to convince the reader that, while
perhaps foreboding at first with all the terminology that goes into it, Riemann-Roch
is actually not a scary theorem. In face, remembering some basic ideas from your
complex analysis course, you would very likely stubmle very close to it yourself, if
somebody asked you to ponder what we call in this note the Riemann-Roch Problem.

0.3. What we do not do. Please note that we do not actually prove the theorem,
as we leave a key step unverified in section 1.10. If you wish to see how this can be
resolved, and a real proof obtained, please consult | ].

1. FUN & EASY COMPLEX ANLYSIS GAME

1.1. Holomorphic functions. Let X be a compact connected Riemann surface,
fixed throughout for the rest of this note. The most basic type of complex analytic
functions on X that we could consider are holomorphic functions.

Alas, we know from basic complex analysis that non-constant holomorphic func-
tions are incapable of attaining extrema. That is rather problematic, since the
compactness of X implies by basic point-set topology that any continuous function
on it will have to have maxima and minima. Consequently, the only holomorphic
functions on X are the constant ones. In symbols, we have &(X) = C.

1.2. Meromorphic functions. From our basic course in complex analysis, we re-
call another type of functions: meromorphic. They are functions almost everywhere
holomorphic, but which are allowed to have isolated poles at certain points.

We know from section 1.1. that, if we do not allow for any poles, we get no non-
constant functions on X. How about if we allow a single pole? Or two? Or three?
Etc. This is the basic question in the Riemann-Roch circle of ideas:
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The Riemann-Roch Problem (1st version). Determine the number of meromor-
phic functions on X with prescribed poles.

1.3. Vector space L(D). Thus let us organize ourselves. Fix some arbitrary points
x1,...,2q € X, and consider the for notational convenience D = x1+---+x4, really just
a formal sum of those points. Then we set L(D) to consisting of functions which
are holomorphic away from the x;, and are allowed to have at most a simple pole at
each point z;. We also allow the constant function 0 in L(D), thus making it into a
complex vector space. Since this is a vector space, the “number” of functions, alluded
to in the previous function, should be interpreted as its dimesnion ¢(D) = dim L(D).

1.4. The Riemann-Roch problem. The Riemann-Roch problem may now be
expressed as

The Riemann-Roch Problem (2nd version). Determine ¢(D) in terms of data
of the points themselves, and the topology of X.

Since we feel that the choice of points should not effect the question too much,
it seems reasonable to expect their contribution to be in terms of their number d.
On the other hand, the topology of X is entirely determined, among topological
surfaces, by the non-negative integer g, its genus. Thus we wish to describe /(D) in
terms of d and g.

1.5. Residues. Well, let us think about functions in f € L(D) then! Since we do
not know much about them, there is very little we can do.

If you know that a meromorphic function f on X has a pole at a point z € X,
then you you know that in terms of a small enough local holomorphic coordinate
chart! (z,U) around x, you'll be able to write

flo=) a;2
j=—1
for some constants a; € C. This is the Laurent series expansion of f around z. The
interesting part, i.e. the part pertaining to the pole, is concentrated in a_; = Res,(f),
the residue - thus is the same definition as in basic complex analysis.

The assignment f ~ (Resy,(f),...,Res,,(f)) defines® a clearly C-linear map
Res : L(D) - C?. Tts kernel consists of those functions f € L(D) whose residues
at all the points z; are zero, i.e. which are holomorphic at all those points. Since
a function in L(D) is already holomorphic everywhere else, the kernel of Res is
O(X) ~ C. At this point we have the exact sequence

0-C - L(D) 2% ¢,
which however is not necessarily exact on the right - the map Res need not be
surjective. That is to say, we have

(1) (D) =dim C +dimRes(L(D)) = 1+ dimRes(L(D)).

IThat is, an open subset U ¢ X together with a holomorphic embedding z : U <= C. Any
Riemann surface may by definition be covered by such charts, and so local questions on it translate
purely into ones of complex analysis in one complex variable.

2We should point out that this map does depend on the choice of coordinates (#,U;) around
each point x;. There is nothing wrong with that per se, though it might feel a little dirty. In fact,
we will return to this after a fashion in section 1.9.
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We have made good progress towards Riemann-Roch here! Now the problem has
become determining the image Res(L(D)) inside C¢. We approach this by finding
a system of linear constraints that its elements must satisfy.

1.6. The Residue Theorem. We take inspiration from our course in complex
analysis. The one thing we might remember having learned there about residues, is
the Residue Theorem. It says that if f is a meromorphic function on (neighborhood
of) a relatively compact open domain U € C, with poles 21, ..., 2, € U, then we may
express the path integral of f around the boundry of U as

AUf(z) dz = 27Tij;Reszj(f)

We might imagine doing this on the Riemann surface X as well, perhaps by cutting
it into coordinate chart pieces, and then canceling the integral contributions along
the cuts (as they would enter the total sum of the integral once in one direction,
and once in the opposite, hence with twice with opposite signs).

But since the Riemann surface in question has no boundary, the LHS integral
would evaluate to 0, leaving us with the claim that the sum of residues is zero. That
is precisely the sort of thing we are looking for: a linear relation among residues!

1.7. A problem with this idea. That is a great idea, but it has one fatal flaw:
it is not possible to consistantly define an integral of a holomorphic function along
a curve on a Riemann surface. Roughly, that is because they are missing the dz
term. That must come from a holomorphic coordinate z, and on C (where your
complex analysis likely took place), one may choose such a coordinate once and for
all and express everthing in terms of it (again, almost certainly how you did it in
your class). Then it doesn’t matter if we are thinking of f(z) or f(z)dz, as we can
always multiply or divide with the chosen dz to pass from one to another. The issue
is that, on a general Riemann surface X, it will generally not be possible to define
such a globally well-defined dz.

1.8. Differential forms. This is not hard to fix though: instead of considering
differential functions, i.e. functions f : X - C which look in terms of every holomor-
phic chart (z,U)) as a holomorphic function f|y = f(2), we may instead consider
holomorphic 1-forms.

A holomorphic 1-form w is something that looks on every holomorphic chart (z, U)
as w|y = g(2) dz for some holomorphic function g(z) on the complex plane. As such,
it is precisely the kind of thing that may be integrated along paths on X! And while
a globally well-defined dz might not exist, holomorphic 1-forms, which must only
look so locally very likely will.

Replacing the word “holomorphic” with “meromorphic” everywhere in the pre-
vious paragraph, we also get meromorphic 1-forms. Those are the ones which may
posses residues, and so they are the ones to which the Residue Theorem will apply,
guaranteeing that all their residues together sum to 0.

1.9. Linear constraints on Res(L(D)). Thus to estimate the image of Res, fol-
lowing the program of section 1.6., let’s fix an arbitrary non-zero holomorphic 1-form
w on X. For any non-zero f € L(D), the product fw is then a meromorphic 1-form
on X with poles only possible at the points z;, and so the Residue Theorem shows
that

Res,, (fw) + -+ Res,, (fw) = 0.
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In holomorphic local coordinates (z;,U;) around each point z;, suppose you write
wly, = gjdz; for a holomorphic function g; € &(U;). Then you have

Res,, (fw) = Res,, (f)g;(z;)

and consequently the above Residue Theorem relation becomes
d
> Res,;(f)g;(x;) =0.
j=1

Thus if (a4, ...,a,) € C? belongs to the image of the map Res, it must satisfy the
linear relation

d
;aj(f)gj(%') = 0.

This was for a fixed holomorphic 1-form w, and since the relation is clearly linear in
w, we get dim Q' (X )-many linear relations on the image of Res.

Here we have used Q'(X) to denote the vector space of holomorphic 1-forms on
X. Tt is a basic truth of Riemann suface theory that dim Q!'(X) = g, the genus of X.
Indeed, that may (and in algebro-geometric contexts often is) taken as the definition
of the genus.

1.10. Dependence among the linear constraints. In the previous section, we
found a system of linear constraints on the elements of Res(L(D)) ¢ C2, one for
each element w € Q1 (X).

But not all of these constraints will be independent: indeed, if g;(z;) = 0 for all
1< j<d,i.e.if wvanishes at all the points z; , then the relation imposed by w is void.
Let QL (X) denote the vector subspace of Q'(X) consisting of all holomorphic 1-
forms which vanish at all points ;. Then the non-trivial linear constraints obtained
in 8. are given by Q'(X)/QL(X).

These linear constraints are also sufficient?, i.e. they precisely cut out the subset
Res(L(D)) c C?. Tt follows that

dimRes(L(D)) = dimC?-# constraints
= d-g+dimQp(X).
Combining this with the formula (1) we got before for £(D) in terms of Res(L(D)),
we get the formula
(2) ((D)=1+d-g+dimQ}(X).

This is the Riemann-Roch formula! In many ways, it is the solution to the Riemann-
Roch Problem, as set out it section 1.4. - it expresses ¢(D) in terms of d and g. We
could perfectly well stop our discussion here.

2. DIVISORS & STUFF

But let us instead try to relate equation (2) to the usual formulation of the
Riemann-Roch theorem you might have come across.

You might justifiably object to calling equation (2) the Riemann-Roch theorem.
For instance, you might object that it is not actually a good solution to the Riemann-
Roch Problem, as set out in section 1.4., since it includes the term dim O} (X).

3This is the one point in this argument where we merely assert something, and not prove it.
That is fine though, as shown in | ], it is not all that hard to make this into a real proof.
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2.1. Riemann’s Inequality. Indeed, Riemann himself had come only this far in
[ |, though like us in 1.10., he didn’t really prove that the system of constraints
is sufficient. Instead he settled for the inequality

((D)>1+d-g.

From the perspective of the 1st version the Riemann-Roch Problem from section
1.2., this is quite reasonable. If you are trying to figure out how many poles you
must allow meromorphic functions to have until some non-constant ones actually
start existing, this inequality will get you there!

For instance, Riemann’s goal in | | was to prove that every compact Riemann
surface is algebraic. To do so, he required a good supply of linearly independent
meromorphic functions (from which to build the embedding X < P7, the image
of which he then proved to be cut out by polynomial equations). His inequality
kindly provided him with information about poles at (at least) how many points
were neccessary for that.

2.2. Roch’s contribution. It was Riemann’s student Roch, who in | | com-
pleted the inequality to the equality. First he showed that the system of constraints
is indeed unique, and secondly, he recognized QL(X) as something else. To under-
stand what this something else is, it will be useful to first discuss how RR can be
generalized, as it will make us organically stuble upon the ingredients.

2.3. Higher order poles. Instead of only considering meromorphic functions with
simple poles, as we have up to now, we might have allowed higher poles too.

Indeed, imitating section 1.3., we might have fixed points z1,...,x; € X together
with degrees nq,...,ny € Zso, and considered meromorphic functions on X which are
holomorphic away from the points z;, and may have a pole of order up to n; at z;, for
every 7 =1,..., k. Collecting this data into the form of a divisor D = nyxi+---+ngxyg,
the associated meromorphic functions form the vector space L(D).

Then we may imitate the steps of sections 1.4. — 1.10. with only the discussion
in section 1.5. needing to be seriously modified. Indeed, if a function f is known
to have a pole of degree up to n at a point z, then in terms of a local holomorphic
coordinate (z,U) around z, its Laurent expansion will be

f|U = Z CLjZ].
j=-n
The “interesting” information, i.e. pertaining to the pole, now resides in the n-tuple
of coefficients a_,,,...,a_; € C.
Thinking about sections 1.6. — 1.10. we see that this means the role of d in them
will be played by the number

deg D =nq + -+ ny,

the degree of the divisor D. In particular, in place of (2), the Riemann-Roch formula
becomes

(3) (D) =1+degD - g +dimQ}(X).

We still haven’t come to identifying the dim QL (X) term with anything else, but
we might have come to appreciate the role of divisors in the Riemann-Roch story
better. At this point, it may occur to us that this whole story has secretly been
about divisors all along, so it is worth our while to consider them slightly more
closely.



2.4. Divisors. It pays to generalize the notion of a divisor slightly, by allowing it to
be D =njx; +---+nx;, for any points x; € X and any degrees n; € Z. To differentiate
them, divisors with all the coefficients n; > 0, such as we considered in the previous
paragraph, are called effective divisors.

This way, given a meromorphic function f on X, we can associate to it the
principal divisor

div(f) = {zeros of f} - {poles of f}.
Both zeros and poles here are counted with multiplicity, which amounts for the
degree coefficients in the divisor. These may be viewed as the prime examples of
divisors.

Note that the points x; appearing in the divisor D = n,z; +---+n,x) are somewhat
artificial: if xp,; € X is another point we would like to add, we may add it as D =
n1x1+-+npxr+0xk,1. In general, we could view any divisor as a sum D = ), .y n.7,
but where we require the degrees n, € Z to vanish for all but finitely many points
relX.

From this, it is obvious that we can sum and substract divisors, and that they
form an abelian group. Indeed, it is the free abelian group spanned by the points of
X. But we can also put a compatible partial ordering on divisors: if D =} .x n,x
and D' =Y .y n/x, then we say that D < D’ if and only if n, <n/, for all x € X.

2.5. The Riemann-Roch Problem in terms of divisors. Using the technology
of divisors from the last section, we can rephrase the definition of the vector space
L(D), associated in section 2.3. to an effective divisor D = njx; + --ngxg, in terms
of it.

Indeed, for a meromorphic function f on X, note that the condition that is
holomorphic away from the points z; and allowed to have a pole of order up to
n; at each x;, is equivalent to demanding that its divisor satisfy div(f)+ D > 0.

This works, at least as a definition, for any divisor D:

L(D)=A{fe#(X):div(f)+D >0} u{0}.
That is, if D = nyzy + -+ + ngxy, a function f e L(D) is
¢ holomorphic away from the points z;, or at z; if n; =0,

e allowed to have a pole of oder up to n; at the point z; if n; > 0,
e must have a zero of order at least n; at the point x; if n; <0.

The Riemann-Roch problem, as always, is to determine /(D) in terms of the genus
g of X and the degree of the divisor deg D = nq +...+ny. In fact, formula (3) is still
valid, so long as we interpret },(X) as conmsisting of those meromorphic 1-forms
which are
e holomorphic away from the points z;, or at z; if n; =0,
e must have a zero of order at least n; at the point z; if n; > 0,
e allowed to have a pole of oder up to n; at the point z; if n; <0.

Note that this is precisely opposite to the requirements for a meromorphic function
to be in L(D), suggesting that perhaps Q7,(X) has to do with —D instead of D.

2.6. The canonical divisor. Finally we come to Roch’s contribution to the Riemann-
Roch story, alluded to in section 2.2. First, he introduced a special kind of divisor
on X, called the canonical divisor and denoted by K. This divisor has the special
property that

L(K) ~QY(X).
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We may define it by taking an arbitrary non-zero meromorphic 1-form w, and asso-
ciating to a divisor div(w) of its zeros minus its poles, just as we did for functions
in section 2.4. This gives rise to the canonical divisor K = —div(w).

The isomorphism L(K) ~ Q!(X) is now given by sending f — fw, for the chosen
meromorphic 1-form w. Since the points at which w has a pole of some order, f must
have a zero of at least that order, the obtained 1-form fw is indeed homolorphic.
Conversely, for an arbitrary w’ € Q1(X), a holomorphic chart (z,U) gives rise to
local expressions w|y = g(z) dz and w’ = ¢’(2) dz for a holomorphic function g and a
meromorphic function ¢’. Then

wly 9(z)dz g(z)

ro. . . .
and so f = % is a meromorphic function on X, which must have zeros where w

has poles, and may have poles where w has zeros. I.e. we have found an element
f e L(K), such that w' = fw, establishing the desired isomorphism.

2.7. The Riemann-Roch formula. The argument of the previous section is easy
to modify in the presence of a divisor D. It allows us to entirely analogously obtain
a vector space isomorphism

(5) L(K - D) = Qp(X),

realizing the criptic remark at the end of section 2.5.

Now we can deliver on the promise in 2.2. that we would come to Roch’s con-
tribution to the Riemann-Roch story. Using this identification, the Riemann-Roch
formula (3) may be rewritten in the today-standard form

((D)-U(K-D)=degD+1-g.

As we mentioned in section 2.5.; this works for an arbitrary divisor D on X, and
this is the celebrated Riemann-Roch Theorem in its definitive form.

3. WHERE LINE BUNDLES FIT INTO ALL THIS

Let us give a few hints and remarks as to how the Riemann-Roch story ties into
the theory of holomorphic line bundles.

3.1. Divisors and line bundles. In section 2.6 we found a divisor K, for which
OYX) ~ L(K). Similarly, it is clear that ¢(X) ~ L(0). This might lead us to ask:
what sorts of functions or function-like things on the Riemann surface X can be
expressed as L(D) for some divisor D.

The answer turns out to be: all sections of holomorphic line bundles. Given a
holomorphic line bundle .Z on X, there always exists a divisor D on X for which
there is an isomorphism L(D) ~ I'(X;.Z), identifying the its global (holomorphic)
sections.

Indeed, we may find it by following the same recpie we used for Q% in section
2.6.: let s e ['(X; £ ®4, #x) be a non-zero meromorphic section of the line bundle
Z. To obtain the desired divisor D, we take its divisor of poles minus its divisor
of zeros. Then an argument entirely analogous to the one in section 2.6. shows that
the map L(D) » ['(X;.Z), sending f ~ fs, is an isomorphism of vector spaces.
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3.2. Divisor class group. There is some ambiguity in the process outlined in the
previous though: different choices of the section s may lead to different divisors D.
Alas, since .Z is a line bundle, an argument along the lines of (4) from section 2.6.,
shows that any two non-zero meromorphic sections s and s’ of .Z must be related
by s = fs’ for some meromorphic function f on X. It follows that the two divisors
obtained from s and s’ will differ by a principal divisor div(f).

Thus while the divisor D associated to the line bundle .Z may not be well-defined
as an element of the divisor group Div(X), it is well defined as an element of the
divisor class group Cl(X) = Div(X)/div(.# (X)*).

3.3. The first Chern class. The divisor D, associated as described in section 3.1.
to the line bundle ., is called the first Chern class of £, in which capacity it is
denoted ¢1(.Z). Using it, we may define the degree of a line bundle in terms of the
degree of a divisor as .Z as deg.Z = degc1(Z). If you are concerned about the
uniqueness of this definition, see Appendix A.

In light of section 3.2., we may view the first Chern class as a map

¢1 : LinBun(X') - CI(X)

from (holomorphic) line bundles on X (modulo isomorphisms) to the divisor class
group. Furthermore, it is clear from its description that

(L ®p, L") =c1(L)+ (L),

making it a group® homomorphism. In fact it is even an isomorphism. That is, line
bundles and divisor classes encode the same data.

3.4. Equivalence between line bundles and divisors. To convince ourselves of
this claim, we construct and inverse to ¢, imitating (or more precisely, localizing)
the construction of the vector space L(D) from a divisor D that we had given in
section 2.5.

Given a divisor D, we define the holomorphic line bundle .Z (D) so that its sec-
tions® over any open U € X are given by

N(U; 2(D)) ={fe#U):div(fly) + Dly 2 0} u{0}.

Here D|y is obtained from the divisor D = Y.y n,x by throwing away all the points
not in U, which is to say, D|y = 3, ne2. It is quite easy to see that ¢; (£ (D)) = D
(at least, up to a principal divisor), while an argument analogous to the one we
made in section 2.6. for £ = QL shows that £ (¢;(Z)) ~ Z.

3.5. Riemann-Roch for line bundles. If .Z is a line bundle, then . = £ (D) for
some divisor D. Since Z(D)® Z(-D) = Z(0) = Ox, we may identify the dual line
bundle to .Z with £V = Z(-D). In light of this, the isomorphism (5) of section 2.7.
may be rephrased in terms of an arbitrary line bundle . on X as the isomorphism

DX 00, QL) = L (X)

4The group of holomorphic line bundles on X up to isomorphism, equipped with the operation
of tensor product, is called the Picard group of X.

5Thus we are actually defining .Z (D) as a sheaf, and claim that it is in fact the sheaf of sections
of a holomorphic line bundle. This kind of identification of bundles and their sheaves of sections
is hihgly standard in algebraic geometry.



of complex vector spaces.Thus the Riemann-Roch formula of section 2.7. may be
expressed in terms of line bundles as

(6) dimI['(X;.%) -dim['(X; 2 ®4, Q%) =deg L +1-g.

4. COHOMOLOGY AND ALL THAT BIZZ

This section is a little harder than the previous ones, and we hope that this it will
not spoil the fun-and-easy flavor of what came so far. Perhaps everything discussed
from here on might be better saved for baby’s second Riemann-Roch.

4.1. What are we even doing? When we set off on our Riemann-Roch adventure,
we found in section 1.4. that we were interested in the vector space L(D) for a (gen-
eral, since section 2.5.) divisor D on X. In section 3.4. we learned that this vector
space L(D) = ['(X;.Z(D)) may be viewed as the global sections of a holomorphic
line bundle .Z (D) on X, and that divisors and line bundles are in bijection through
this construction.

Thus, instead of the divisor D, we might have started of with a holomorphic line
bundle .Z, and ask ourselves the following question:

The Riemann-Roch Problem (3rd version). Determine I'(X;.Z) in terms of
data about the line bundle and the topology of X.

With that as our problem, surely the Riemann-Roch formula (6) of section 3.5.
is the answer. But there is nonetheless something new to be learned: our focus has
shifted to global sections of line bundles. So let us talk a little about those.

4.2. Global sections. We want to think about the process . ~ I'(X;.%), of
sending a line bundle to its vector space of global sections.

Our argument to establish Riemann-Roch used in 1.5. the technology of exact
sequences, which is to say homological aglera, and it seems convenient to ask for it
in this setting too. Sadly, line bundles are ill-equipped to handle such things: they
can not accomodate the most basic operation of homological algebra: taking direct
sums. This issue is of course that, if .Z and £’ are line bundles, then their direct
sum . & .£’, while still a vector bundle, will have rank 2 instead of 1.

4.3. So, vector bundles then? Based on that observation, we should extend our
scope to (holomorphic) vector bundles & on X, for which global sections & ~
I'(X;&) work just as well. But we are not out of the woods yet! While vector
bundles allow us perform many operations of homological algebra, i.e. direct sums
and kernels, they fail to allow cokernels.

The issue is simple to illustrate: consider for a fixed point z € X the inclusion
i:O0x = £ (x), where Z(x) is the line bundle associated to the divisor z. Following
the explicit description of the latter from section 3.4., we see that ¢ is the inclusion
of holomorphic functions into functions which are holomorphic away from =z, and
may have at most a simple pole at z. The cokernel of this map coker(i) = £ (x)/Ox
should thus has vanishing fibers at all the points y € X, since the two bundles agree
precisely on any small enough neighborhood of .

To understand what is happening at the distinguished point z, we recall the
Laurent series expansion from 1.5. In a holomorphic chart (z,U) around z, the

9



inclusion i : Oy - £ (x) is given, in terms of the Laurent expansions, as the inclusion
of (convergent) series

{Zajzj : ajC} > { Y ajzlia;e C}.
j=0 =
To obtain the cokernel, we extract the coefficients a_; € C, or as we recalled in 1.5.,
compute the residue at z. It follows that the fiber of coker(i) at the point x must
be C.

Alas, if coker(7) were to be a vector bundle, such as .Z(x) and Ox are, then all of
its fibers would have to be isomorphic as complex vector spaces. We conclude that,
in order to be able to form cokernels, holomorphic vector bundles are not enough.

4.4. Coherent sheaves. Once again, we expand our objects of interest, this time
explicitly by building in cokernels.

Indeed, recall (as you might know, e.g. from a course in algebraic geometry) that
a vector bundle on® X may equivalently be defined as a sheaf & of &x-modules,
such that there exists for every point a neighborhood U ¢ X and an isomorphism of
O-modules

& |U ~ 0 37“'

That is, locally & is isomorphic to the direct sum 0%, where r is its rank, but not
necessarily globally.

Well, since we saw in the last section that vector bundles are not closed under
cokernels, we define a coherent sheaf” to be a sheaf .# of Ox-modules, such that for
every point there exists a neighborhood U ¢ X and an exact sequence of &'x-modules

O - 659 > |y > 0.

Thus a coherent sheaf is locally a cokernel of a vector bundle map. Finally coherent
sheaves Coh(X) turn out to be a convenient place to do homological algebra. In
fancy words, we can say that they form an abelian category.

But before we delve into the homological algebra we wish to perform in this
abelian category, let us examine some of its objects, to get a bit of a feeling for
coherent sheaves, and hopefully dispel any air of mystery surrounding them.

4.5. Skyscrapers. Coherent sheaves on X by design contain all vector bundles,
along with a bit more. The archetypical example is the cokernel from section 4.3.
that we could not form inside vector bundles.

That is, for any point x € X, the cokernel of the inclusion Oy - Z(x) is de-
noted x,(C), and called the skyscraper sheaf at x. Equivalently (and somewhat
more standardly), it is the cokernel of the inclusion Z(-x) - Ox, of holomorphic
functions vanishing at x into all holomorphic functions. An easy generalization is
the skyscraper sheaf x,(V'), where V is any finite dimensional complex vector space.
It may be formed as a direct sum of copies of z,(C).

It follows from our discussion in section 4.3. that x,(V') has the fiber V' at the
point x, and 0 at al other points in X. In this sense, its support is the O-dimensional

6This would work just as well if X were not just a Riemann surface, but also a complex manifold,
complex space, algebraic variety, scheme, etc.

"Technically, what we are defining here is called a finitely presented Ox-module. Under nice
circumstances, such as that when X is a compact Riemann surface (or, if you prefer, smooth
algebraic curve), the two agree.
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subspace {2} ¢ X, so unlike line bundles and vector bundles on X, which have to do
with its 1-dimensional geometry, skyscraper sheaves are inherently 0-dimensional.

4.6. Coherent sheaves = vector bundles + skyscrapers. Vector bundles and
skyscrapers are the two extreme cases for how coherent sheaves can look, and a
general coherent sheaf will be something in the middle. Let us elaborate on this a
little. As the example of the skyscraper sheaf illustrates, the dimension of the fiber
of a coherent sheaf need, unlike that of a vector bundle, not be locally constant.
Instead, it may exhibits jumps, though as it turns out, at most at finitely many
points®. In this sense, coherent sheaves look like a vector bundle almost everywhere,
with a finite number of skyscraper protrusions.

4.7. Taking global sections is not exact. When working in the context of abelian
categories, the functors that we like best are exact ones. That is to say, those which
preserve short exact sequences.

The abelian categories of interest to us here is Coh(X) and Vectc, and the functor
is I': Coh(X) - Vectg, given by % — I'(X;.%#), which sends a coherent sheaf to its
global sections. Alas, this functor is not exact.

Indeed, consider the short exact sequence of coherent sheaves

0-0Ox - % (x) = z.(C)—0,

which comes about from the definition of the skyscraper sheaf in section 4.5 as a
cokernel. Passing to global sections, we obtain the exact sequence

(7) 0-C- L(z) > C,

the map C - L(z) including the constant functions into functions on X that have at
most a simple pole at x, and L(x) - C computing the residue at x. We encountered
this sequence in section 1.5. already, and indeed, we are disussing the same difficulty
as there: that the right-most arrow Res, is not necessarily surjective. If it were,
that is, if the sequence were short exact, we would find that

(8) dim L(x) = dim C + dim C = 2.

That is true for the Riemann sphere, which is to say when X = P!, but not for a
general compact Riemann surface. To convince ourselves of this, we work it out for
one particular family of Riemann surfaces X.

4.8. Working this out on an elliptic curve. Consider the case of the elliptic
curve X = C/(Z +iZ), which is topologically a torus.

Indeed, recall that the torus admits a continuum of complex structures, parametrized
by 7 € C with Re(z) > 0. For every such 7, the quotient C/(Z+7Z) equips the torus
with a non-isomorphic Riemann surface structure. The argument below would work
for an arbitrary such 7, but for simplicity we stick with 7 = 1.

A holomorphic (resp. meromorphic) function on X may be identified with a holo-
morphic (resp. meromorphic) function f(z) on C, which is doubly periodic in the
sense that

f(2) = f(z+1) = f(z+1).

8In the case of compact Riemann surfaces = algebraic curves that we are considering, or along
codimension > 1 subschemes/complex subspaces in general.
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Let z € X be the image of 2z, = %(1 +1) € C, the “center of the fundamental square”.

In order for f to define a function in L(x), it must be holomorphic away from z,
and may have a simple pole there.

The value of the residue Res, (f) may be computed by integrating® f(z) dz around
zo. The choice of the counter of integration is arbitrarym, so long as it does not cross
any poles of f, (that is the content of the Cauchy Integral Theorem, another staple
from your basic complex analysis course,) and so we may “drag it out” (homotope
it) to the “boundy of the fundamental square”, i.e. the square in C spanned by the
points 0,1,4, and 1+ ¢. The required periodicity of f(z) shows that the integrals
over opposite sides of the square, which must be taken with opposite orientation,
cancel with each other, and we find that Res,(f) = 0.

In conclusion, a meromorphic function on X that is not holomorphic must have
at least two poles. Consequently L(z) = 0(X) = C, and dim L(z) = 1, violating the
dimensional equality (8) and consequently showing that the sequence (7) can not be
short exact.

4.9. Cohomology to the rescue. We learned from section 4.7. that the global
sections functor ' : Coh(X) — Vectc is not exact. That hinders our ability to apply
the methods of homological algebra to its study. We could try to works around it,
and live with this failure for the rest of our lives. Instead, holding our head up, we
get to work fixing it!

The solution will turn out to consider not only the functor I', but a whole family
of functors H® for ¢ > 0, with HY = I". This is sheaf cohomology, and the reason it
appears in the usual treatment of the Riemann-Roch Theorem in the literature.

4.10. Derived functors. The method of resolving the issue of functors not being
exact is a general one, and though we usually choose specific over general in this note,
let us once for a change discuss the general picture. Suppose we are given a functor
between abelian categories F': A — B, which is left exact, that is, it preserves left
exact sequences, but not necessarily right exact ones. Then there exists a canonical
family of functors R'F : A — B for i > 1, called the right derived functors of F, such
that for any short exact sequence

0-A->A->A"-0

in A, the left eract sequence in B, obtained by applying F' to this short exact
sequence, canonically extends to a long exact sequence

0 —— F(A) —— F(A) — F(A")

R'F(A") —— R'F(A) —— R'F(A")

R?2F(A") —— R2F(A) —— R2F(A") —— .
In light of this, we often write ' = R°F in analogy with R'F.

9t turns out that for elliptic curves, the issue of computing residues, that we discussed in section
1.7., is avoided. That has to do with a canonical choice of a holomorphic 1-form, possible because
an elliptic curve is a so-called Calabi- Yau manifold. If you are around algebraic geometers, or
mirror symmetrists more generally, you have likely heard that name before.
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If F is already exact, then R*F =0 for all ¢ > 1. If not, the derived functors R'F
provide a quantitative measure to how far the functor F'is from being exact.

4.11. Computing derived functors by resolutions®. This section may safely
be skipped. The property of turning short exact sequences into long exact ones, that
we talked about in the previous section, is really all you need know about derived
functors. But for what it’s worth, we briefly describe a method of computing them
explicitly. Perhaps this might explain the relationship with cohomology.

Given an object A € A, pick a resolution, which is to say'®, an exact sequence

0->A—>A" 5 Al 5 A% > ...

in A. Since F' is not right exact applying it to this sequence will destroy its exactness.
None the less, the sequence

0 F(AY) » F(AY) - F(A?%) - -
is still a cochain complex, in the sense that each two subsequent arrows compose to

zero. Thus we may compute its cohomology, i.e. quotienting out the image of one
arrow inside the kernel of the next. This gives rise to the derived functors as

R'F(A) =H(F(A*)).
4.12. Sheaf cohomology. Returning from the abstract digression of the previous
two sections to the setting of section 4.9. let us see what our new-found knowledge

bares for the global section functor I" : Coh(X) — Vectc. For a coherent sheaf .%#
on X, we are led to define i-th sheaf cohomology of F as

Hi(X;.7) = RT(F).
In particular, H*(X;.%) = I'(X;.%) recovers global sections, and for any short exact
sequence of coherent sheaves

0> F > F > F" >0,

there is a canonical long exact sequence of vector spaces

0 — HO(X;.F") — HY(X;.F) — HO(X;.Z")

HY(X;.Z") — H(X;.7) — H(X;Z")

B(X; 7)) — B(X;.7) — (X5 F7) —— -

Of course the construction of sheaf cohomology works entirely analogously!' when
X is not a compact Riemann surface, i.e. algebraic curve, but an arbitrary complex
space, or scheme, etc.

OFurthermore, the resolution must be F-acyclic, which means that R'F (A7) =0 forall i > 1
and j > 0. Thus, in order for this process of computing derived functors to have any chance of
being useful, we must first understand F-acyclic objects in A.

HEyrthermore, we need not have worked in the context of coherent sheaves. Sheaves of @x-
modules would be just as good, though then the vanishing results of section 4.13. would not
automatically apply. Similarly, when working in the algebro-geometric context, we could work with
the abelian category of quasi-coherent sheaves, which is larger and often a little more convenient
than the category of coherent ones.
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4.13. Vanishing above the dimension. But the situation is even a little nicer
than the general story would let us believe! If X is a d-dimensional complex mani-
fold /smooth scheme, then sheaf cohomology vanishes above degree d. That is, if #
is a coherent sheaf on X, then H'(X;.%) =0 for all i > d.

In the case of Riemann surfaces that we are concerned with in this note, we have
d =1, and so the only non-vanishing sheaf cohomology groups are H® and H*.

5. COHOMOLOGICAL ASPECTS OF RIEMANN-ROCH

Now equipped with the technology of sheaf cohomology, we sketch the standard
cohomological approach to proving the Riemann-Roch theorem, that one may find
in most textbooks, e.g. [Fors] or | ].

5.1. The Euler characteristic in topology. You likely recall the Euler charac-
teristic from your topology class, but you may have encountered it earlier.

Its origin is in the study of polyhedra. For a polyhedron with v vertices, e edges,
and f faces, its Euler characteristic is defined as xy = v—e+ f. This is useful for many
applications, for instance in the classical theory of surfaces, and in graph theory.

For topological purposes, it may be generalized to any simplicial complex, as an
alternating sum of the number of the number of similices it possesses in each dimen-
sion. Even more generally, for an d-dimensional manifold M, its Euler characteristic
may be defined as

X(M) = i(—l)idimHi(M; C).

For a polyhedron or a simiplicial complex, this recovers the older notion, but it has
the advantage of being phrased entirely in terms of cohomology, which makes sense
for any space, and not any extra structure, such as a triangulation.

5.2. The Euler characteristic of a sheaf. We imitate this definition is sheaf
cohomology. Returning to the context of section 4.13., let X be a d-dimensional
complex manifold/smooth scheme and .%# a coherent sheaf on it. We set its Euler
characteristic to be

(F) - i(—l)idimmx;f)

In analogy with the topological Fuler characteristic of section 5.1., we might better
use the notation y(X;.%#), but we are mostly sloppy and supress the underlying
complex manifold/smooth scheme X, which is presumed to be understood from
context.

Specializing even further to the context of a compact Riemann surface/algebraic
curve, that we are chiefly interested in here, the Euler characteristic is just

(&) =dimH"(X;.Z) - dim H' (X; .%).
5.3. Additivity of Euler characteristic. What makes Euler characteristic a use-

ful way of packaging the information of sheaf cohomology, is its additivity. We
explain what this means in this section. Let

0~ F' > F > F" >0

be a short exact sequence of coherent sheaves on X a d-dimensional complex mani-
fold /smooth scheme. Then we know from section 4.12. that sheaf cohomology gives
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rise to a long exact sequence, which in light of the vansihing result of section 4.13.
has the form

0 — H(X;F') — H(X;.F) — HO(X;.7")

HU(X; ") — H'(X;.F) — HI(X;.2") .

7> HY(X; F') —— HY(X;.F) — HHYX;.Z") —— 0.

Since any exact sequence of vector spaces satisfies the property that the alternating
sum of the dimensions of its terms is zero (fun and easy-enough exercise in linear
algebral), we find by “summing each of the three columns” that

X(F) = x(F) + x(F") = 0.

This is the additivity of the Euler characteristic. Not only when .% = %" @& " but
also when .7 just fits into the middle of a short exact sequence with .%’ and .#" on
the sides, the Euler characteristic pretends as if it were a sum.

5.4. Corrupted beyond all recognition. Let us now firmly return to the contex
we are actually considering in this note: let X be a compact Riemann surface.

In section 4.1. we rephrased the Riemann-Roch Problem as asking about the
global sections I'(X;.Z) of a holomorphic line bundle ., which is to say about
dimT'(X; %), in terms of the topology of X.

Alas, perhaps section 4.7. convinced us that global sections are not the most well-
behaved thing to look at. Instead, motivated by the nice behavior we saw it exhibit
in section 5.3., we might satisfy ourselves with asking about the Fuler characteristic.

The Riemann-Roch Problem (4th version). Determine x(£) in terms of data
about the line bundle and the topology of X.

Accepting this Riemann-Roch Problem into our life amounts to accepting that we
will only get an answer up to an “error term” H'(X;.%).

That is not even all that radical: all the Riemann-Roch statements we saw so
for, for instance (6) of section 3.5., had error terms in them as welll Those error
terms were phrased in terms of holomorphic 1-forms, but an association game with
de Rham cohomology might lead us to believe that H' might not be that far off. We
will later see this articulated precisely in section 5.9. in the form of Serre duality.

5.5. The key short exact sequence. Thus we wish to understand x(.Z) for a
given (holomorphic) line bundle .. How to approach this? Had we not discussed the
Riemann-Roch theorem without the cohomological language previously, we might
be out of ideas. Instead, we harken to section 1.5. for inspiration.

Recall the short exact sequence of coherent sheaves

0->0Ox > Z(x) > x.(C) -0,

that we already saw in Section 4.7, and whose global sections featured prominently
in section 1.5. Since .Z is a line bundle, tensoring with it preserves short exact
sequences, and so we obtain another short exact sequence

Oﬁg—)g@ﬁxg(l“)%g@ﬁxx*(C)—>0.
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It is clear from looking at fibers that .£ ®4, x.(C) is still a skyscraper sheaf at z,
whose fiber is the fiber of . at that point. Of course, .Z is a line bundle, and so the
fiber in question is C. We know from section 3.4. that £ ~ £ (D) for some divisor
D on X, and so putting all this together, we find ourselves before the short exact
sequence of coherent sheaves on X

0—>%(D)->%(D+z)—>x.,(C) 0.
Using the additivity if the Euler characteristic from section 5.5.; we get

(9) X(Z(D+x)) =x(Z(D)) + x(x.(C)).

To be able to make use of that, we must compute

5.6. The Euler characteristic of the skyscraper. Let us determine the Euler
characteristic of the skyscraper sheaf x,(C). Clearly

H°(X;2.(C)) =I'(X;2.(C)) = C,

while the vanishing property of section 4.13. may be used'? with d = 0 to see that
HY(X;2,(C)) = 0. Indeed, while z,(C) is defined on X, it is supported entirely
on the 0-dimensional subspace {z} ¢ X. It may furthermore be shown that sheaf
cohomology computed on this subspace {z} will agree with the one computed on
X. This justifies applying the vanishing property of section 4.13. Altogether, the
Euler characterstic of the skyscraper sheaf is

X(z.(C))=1-0=1.

5.7. Easy cohomological Riemann-Roch. Combining the computation from the
previous section and the Euler sequence equality (9), we find that

X(Z(D+x))=x(Z(D))+1.

Observe that both the divisor D and the point = were entirely arbitrary in the
above discussion. Since any divisor may be obtained from the zero divisor D by
adding/substracting (deg D)-many points, it follows inductively that

X(Z(D)) = x(Ox) +deg D.

To make this into an solution of the Riemann-Roch Problem of section 5.5., it

remains to determine x(&y ). We already know since section 1.1. that H*(X; 0x) =

0(X) = C, while we may just as well define the genus of X to be g = dim H*(X; Ox).
Putting all of this together, we get the formula

X(Z(D))=degD+1-g,

which is one incarnation of the Riemann-Roch theorem.

5.8. The genus revisited. Above in section 5.7. we elected to take the genus of a
compact Riemann surface X to be g = H'(X; Ox).

This might not seem unreasonable, seeing how we might remember from our topol-
ogy class that the genus of a topological surface X is precisely g = %dim HY(X;C).
Indeed, you might recall the relationship x(X) = 2 — 2¢g between the topological
Euler characteristic and the genus. So in particular, there is a relationship between
the genus and some kind of 1st cohomology.

2This also follows particularly easily from the Cech approach to computing sheaf cohomology.
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The alert-minded reader may not be so trusting though. In section 1.9. mentioned
that the genus may also be defined as g = dim 2'(X'). Why should these two different
proceedures output the same number?

5.9. Serre duality. The answer to the question with which we concluded the last
section comes in the form of Serre duality.

It says that, if & is a rank r holomorphic line bundle on a compact d-dimensional
complex manifold /proper smooth scheme X, then there is a canonical isomorphism

H/(X;8) ~ H(X: 6V @0y Q%)"

for all integers 7 > 0.

This is a reasonably involved theorem, and we do not prove it here. The standard
algebro-geometric approach to proving it reduces it to the case of X = P?, where
vector bundles are easy to understand. When working in the complex analytic
setting, a reasonably simple proof via Hodge theory is also available.

In any case, we apply Serre duality to the case when X is a compact Riemann
surface, so that d = 1, and when & = % is a line bundle, so that = 1. The statement
of Serre duality for ¢ = 1 becomes

HY(X;.Z) ~HY(X; LY ®s, Q%)".

Writing the bundle in terms of a divisor as £ = Z(D), and recalling from the
arguments in section 2.6. that Q% ~ Z(K) (though we only proved this there on
the level of global sections, as we noted in Chapter 3, the proof may be repeated
over an arbitrary open, and so identifies the sheaves), this further simplifies to

HY(X;.2(D)) = L(K - D)".

Consequently the Euler characteristic, as computed by the easy cohomological
Riemann-Roch formula of section 5.7., is nothing but

x(Z(D)) dimHY(X; Z(D)) - dimH'(X; .Z(D))
dimI'(X; Z(D)) -dimI'(X; Z(K - D))"
(D) - (K - D),

recovering the “full” Riemann-Roch formula from section 2.7. This concludes the
usual cohomological proof of the Riemann-Roch Theorem. OJ

5.10. Remarks about this proof. This cohomological approach to proving the
Riemann-Roch has become standard in the literature, no doubt because Serre du-
ality, encountered along the way, is such an important result in its own right. This
proof seems to be due to Serre, first appearing in | |, alongside the articulation
and proof of Serre dulity.

This proof is sometimes, most infamously in the introduction to the chapter on
curves in | ], criticised as unenlightening. We respectfully disagree. As we tried
to make abundantly clear in section 5.5., the key idea of the proof is still the same
residue trick we first encountered in section 1.5., albeit disguised in the language
of cohomology. The use of Serre duality is also merely a profound elaboration on
Roch’s contribution to the Riemann-Roch story from section 2.2.

Nonetheless, as shown by Serre, Hirzebruch, and Grothendieck, the cohomological
interpretation of the theorem is indispensible in understanding how to generalize the
Riemann-Roch theorem from Riemann surfaces to higher dimensions.
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APPENDIX

We collect some remarks that do not fit neately into the above discussion, but
that might nonetheless be helpful in dispelling confusion.

A. Degree of principal divisors. It may seem to one at first glance at the di-
visor class group in section 3.2. that it should be trivial. Indeed, given any finite
collection of points in the complex plane C, one may find a holomorphic function
which vanishes there (or has poles, with arbitrary specified degree, etc.). Alas, we
are working on a compact Riemann surface X, and this makes all the difference.

Indeed, to convince ourselves that many divisors are not principal, note that the
degree of any principal divisor is zero. For a non-zero meromorphic function f on
X, we have

degdiv(f) = # zeros of f —+# poles of f,

counted with multiplicity. Recall now the Argument Principle from your complex
analysis class: if f is meromorphic on a (neighborhood of a) relatively compact
domain U ¢ C, so that all its poles and zeros are contained inside U, then
!
# zeros of f—# poles of f = L 1'(z)
2mi Jou f(z2)

where the left-hand side must be counted with multiplicites. The integrand on the
right-hand side may be rewritten as d(log f), showing that the issue of section 1.7.
does not apply. Indeed, covering X by such holomorphic local charts U, we obtain
a global result valid on X. But since X does not have any boundary, which is
to say, because the contributions from different OU cancel out, we conclude that
# zeros of f — # poles of f = 0 for any non-zero meromorphic function f. Thus
degdiv(f) = 0.

It follows that the notion of the degree deg D of a divisor D indeed depends only
on its divisor class. This was used implicitly in section 3.3. to make sense of the
degree of a line bundle.

dz,

B. What Chern classes have to do with Chern classes. Use of the term “first
Chern class” in section 3.3. may seem rather vexing to readers familiar with Chern
classes from topology.

In algebraic topology, a rank r complex vector bundle £ on a topological space X
get Chern classes associated to it as certain characteristic classes c;”"(E) e H*(X; Z)
for integers 0 <7 < r. In particular, when L is a complex line bundle on a topological
surface X, its topological first Chern class is an element (L) € H*(X;Z). As
with the algebraic first Chern class of section 3.3. the topological first Chern class
determines the isomorphism class of a complex line bundle. The difference is thus
in whether we are considering the complex or the holomorphic vector bundle. Let
us explain the relationship more precisely.

Consider the inclusion Z < ¢(X) of contant Z-valued functions on a Riemann
surface X into its holomorphic functions. This gives rise to the short exact sequence
of sheaves of abelian groups on X

exp

0>2Z—-0x — 0% -1,

where exp really stands for f +~ e?™f. This is called the exponential sequence, and
it encodes much about the complex geometry of X. Zooming in on the connecting
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map in the induced long exact sequence on sheaf cohomology, we obtain a group
homomorphism

HY(X;0%) - H* (X, Z).
The left-hand side may be identified with the Picard group of holomorphic line
bundles on X up to isomorphism.

Indeed, suppose we are given a holomorphic line bundle .Z on X, and a covering
of X by holomorphic charts (z;,U;) over which £ trivializes. That is to say, we
are given isomorphisms 2|y, ~ Oy,, and composeng these for each pair of indices
i,j, we may extract its transition maps f;; € I'(Uy; ﬁg,ij). Together, {fi;}i; is the
gluing cocycle for £, and determines the holomorphic line bundle. On the other
hand, through the mehcanism of Cech cohomology, { fij} represents an element in
H'(X; 0%). It can be shown that this proceedure yields the desired isomorphism.

Combing this with the isomorphism of section 3.3., we obtain a homomorphism

CUX) ~H(X; 0%) » H(X; Z),

and this is the map under which ¢,(.Z) + ¢;°?(Z) for any holomorphic line bundle
% on X, relating the algebraic and topological first Chern class.

Here H?(X;Z) may similarly be identified with the group of topological complex
line bundles on X up to isomorphism. This may be shown by an analogous gluing
cocyle construction as for holomorphic line bundles above. But for those familiar
with classifying spaces, it may also be shown nicely as

H?*(X;Z) ~ moMap(X,B?Z) ~ 1y Map(X,BU(1)) ~ moBuny)(X),

where second isomorphism is because U(1) ~ BZ and the third one because the
classifying space BG classifies G-bundles. Finally we may use the standard repre-
sentation of U(1) on C to identify principal U(1)-bundles and complex line bundles.
It follows that we have spent this section discussing the commutative square

LinBun(X) — LinBun"?(X)

clJ: CEDPJ:

Cl(X) —— H2(X;Z)

whose top horizontal map discards the holomorphic structure of a holomorphic line
bundle and only remembers the underlying complex line bundle.
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